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Localization of acoustical modes due to the electron-phonon 
interaction within a two-dimensional electron gas 
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Department of Physics. Bilkent University, BilkentO6533, Anlrara, lllrkey 

Received 10 June 1992, in final form 26 November 1992 

AbstrpeL We study the localization of amustical modes within a two-dimensional electron 
gas (wEG) due to only the electron-phonon interaction The localized modes split out 
from the bulk phonons even at uniform lattice parameters, when the ZDEG is created by 
means of modulation doping, for example under Sdoping. The effect is more pronounced 
when the wave vector q of the  modes increases and is maximum at q = 2 k ~  (kp is the 
Fermi wave vector). In the case of several electron sheets the additional featurrs of the 
localization eEect appear. 

1. Introduction 

One of the current topics of the semiconductor physics is the locali t ion or 
confinement of phonons in semiconductor heterostructures [14]. This phenomenon is 
interesting because of its fundamental aspects, as well as apprications. In particular, 
the phonon localization affects the electron transport, which is the main object of 
applications of the heterastructures. It is well known that phonon localization in 
heterOstruCtureS is due to the different lattice characteristics of the semiconductor 
compounds forming the heterostructure (various lattice constants, lattice forces, 
symmetry, etc). On the other hand, the existence of free carriers in these layers 
is not considered as the main reason for the localization effect. 

In this paper we predict and study phonon localization (confinement) originating 
from the electron-phonon interaction. We show that localization of acoustical modes 
appears due to only the electron-phonon interaction if there is an electron gas sheet 
(3D or ?D electron layer). The lattice characteristics are uniform before inserting the 
electron sheet, therefore this effect exists even at uniform lattice characteristics except 
the modifications due to the electron-phonon interaction. Such a physical situation 
and the electron layers can be realized by modulation doping, for example under 
&doping [S-71. 

The physical basis of this localization effect mechanism is the same as the physics 
of renormalization of acoustical vibrations by the electrons in bulk materials, a 
subject which has been studied theoretically and experimentally before [SI. It can 
be explained qualitatively as follows. An acoustical wave creates a potential for 
electrons. Electrons having high velocities follow the acoustical wave. Hence they are 
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redistributed in space. Non-uniform redistribution of the electrons leads to space- 
dependent electronic forces which act on the lattice, expanding the lattice in some 
regions while compressing it in others. Renormalization of the phonon spectrum 
arises as a result of such a self-consistent interaction. The sound velocity is always 
decreased by this renormalization, which means a reduction of the elastic modulus 
and a softening of the lattice. In addition to that, it gives rise to a set of other effects 
such as the features of the spectrum at the phonon wave vector q = 2 k ,  (kF is the 
Fermi electron wave vector) and the displaying of the electron system symmetry by 
the renormalized acoustical spectrum. 

In the case when electrons are confined within some layer, the above-mentioned 
mechanism causes a slight decrease of the elastic modulus of the layer. From the 
theory of elastic waves [l-31 if is hown that an embedded layer characterized by 
a decreased elastic modulus always splits the bulk acoustical spectrum into bulk- 
like modes and localized modes. The latter are confined to lie Within or near the 
embedded layer, and propagate along the layer. Therefore we can expect that the 
electron-phonon interaction under the localization of electrons within the electron 
sheet would lead to the phonon localization effect. The aim of this study is to show 
the existence of this phenomenon. 

V A  Kochelap and 0 GLikeren 

2. Model and equations 

We will describe the long-range acoustical vibrations of lattice by the equation for 
sound waves 191 

paZui /a tZ  = auik/axk (1) 

where ui are components of the displacement vector ( U )  of the medium, p is its 
density, uSk is the stress tensor, t and x k  are time and space coordinates, respectively. 
In this paper we use the Einstein summation convention where the repeated indices 
are summed over. For simplicity, we consider the isotropic elastic medium. Then, 
tbe contribution of elastic lattice forces to the stress tensor uik is 191 

fl!;) = ( A  + $P)Uu6;k + 2 @ ( u ; k -  f6ikUll) (2)  

where X and p are Lam6 coefficients, and uik  is the strain tensor. We assume also 
that the electrons are characterized by the isotropic energy law. Then the electron- 
phonon interaction can be described by only one constant of the deformation potential 
b [lo] and the contribution of the electrons to the strain tensor uik is 

where n is the electron concentration. This term can be derived from the free energy 
of the system [l l]  which includes the electron-phonon interaction in the form bnVu. 

Inserting equations ( 2 )  and (3) into equation (I), the equation for the 
displacement ui is obtained 

p a Z u i / a t Z  = ( A  + p )  a u , , / a x i  + pV2ui  + ban/&, (4) 
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We assume that the electrons are confined in a sheet of thickness d by a 
corresponding potential (for example, by the electrostatic potential of the positive 
charge of donor sheet). The phonon wave vector q is restricted such that the 
characteristic decay length of modes outside the sheet K ; ' ( q )  is much larger than 
the layer thickness d. The criterion is 

4 q ) d  K 1. (5) 
In such a case it is possible to consider the electrons as confined in a plane (for 

example, in the plane z = 0, where z is the direction perpendicular to the plane). 
Hence the electron concentration can be written as 

n ( r , t )  = ns(z,Y)6(z) (6) 
where n, is the 'surface' concentration of the electrons. However, electron motion 
can have a ZD and 3D character depending on the number of electron subbands. 
We consider that the electrons follow adiabatically the vibration of lattice and 
are. redistributed in the potential of the acoustic wave according to the physical 
picture presented in the introduction. The inequality B hw, which is a necesaty 
condition of this adiabatic approximation, always holds for the semiconducds (C is 
the characteristic electron energy, w is the phonon frequency, see appendix). The 
potential induced by the acoustic wave is 

Here the term bull describes the change of the bottom of the electron zone due to 
the deformation of the lattice, and q is the electrostatic potential arising from the 
non-uniform redistribution of the electrons in space and it is governed by the Poisson 
equation 

h ( r )  = buti - eq.  (7) 

V'P = (4re/cu)6n,(2, Y)~(z) (8) 
where E,, is the dielectric constant of crystal. 

has the form 
We assume the dependence of all the variables on the plane coordinates (z, y) 

ui,q,h,6nscxeiq'11 (9) 
where q lies in the plane of the electron sheet and rII = rII(z, y). Any change in the 
electron concentration 6n can be calculated by using the perturbation theory for the 
density operator (see appendix): 

6 7 4 2 , ~ )  = h(x ,y ,z  = O)P(q ,T) .  (10) 
Here 

is the polarization of the electron subsystem. E , , ~  is the electron energy for the nth 
subband, IC is the wave vector of the electrons describing their motion in the plane of 
the electron sheet, and f,,(c,,k) is the Fermi distribution function. If the number of 
subbands is large, the electron motion within the sheet is almost threedimensional. 
If the number of subbands is small, the polarization P ( q ,  T) corresponds to the 
electron gas with reduced dimensionality. 

The set of relationships (4), (U), (lo), (11) is sufficient to consider the acoustical 
modes localized near the electron layer. 
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3. Solutions for localized modes and their analysis 

It is easy to prove using equation (4) that only longitudinal acoustical waves interact 
with electrons in our model of the isotropic energy spectrum of the electrons. 
Therefore it is convenient to consider the equation for relative volume change 
V . U uII instead of several components of the displacement of the lattice. From 
equation (4) we find the equation: 

V A Kochelap and 0 GiIlreren 

8 2  
8t p + V .  U) - ( A  + 2p)V2(V . U) = bV2n. 

Now, by taking into account the relationships (6) and (s), we can write the system of 
equations in the following simple form for the region outside the plane z = 0 

Here w is the frequency of the determined waves, cL is the velocity of the longitudinal 
acoustical phonons for the system without electrons. The solutions of equations (13) 
outside the sheet (at z # 0) should be matched at z = 0 by the following conditions: 

and satisfy the boundary conditions far away from the sheer 

",,,q%-+O z-&Ca. (16) 

In equations (14), u,,(&O) and d(&O) are the solutions at the left- and right-hand 
side of the sheet in the limit z - &O. The conditions (16) mean that we look for 
solutions localized near the electron sheet 

The solutions of equations (13) can be written for both uti and 4 from equation 
(15) by using continuity conditions as 

ulf  = Ae-XIzI K = J4z-wz!.z 4 = Be-qI"1. (17) 

Inserting these solutions into equation (14) gives the relationship between the 
magnitudes of the acoustic wave and the vibrations of the electrostatic potentiai: 

B = -Ab[4rrezP(q,T)/eu]?/[2q + 4ne2P(q,T)/e$. (18) 
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The expression for n is 

IC = \/q2 - w2/ct = [b2P(q, T) / (X + 2~)1[d/ (2q + 4re2P(q, T ) / d I .  (19) 

The right-hand side of equation (19) is always positive. This means that the solutions 
decay exponentially far away from the layer. The same expression gives the dispersion 
relation for the localized acoustical modes 

w2 = qZcZil1- W P ( q , T ) / ( X  t 2 ~ ) 1 8 / ( 2 q  + 4re2P(~IT)/~u)12P. (20) 

One can see from (20) that the frequencies of the localized phonons are always 
less than the frequencies of the bulk one. That is consistent with the physical picture 
described in the introduction The splitting value of the frequencies depends on the 
fourth power of the constant coupling b. The difference between the bulk phonons 
and the localized one also grows with increasing q: the degree of the localization 
becomes larger as is seen from relation (19), and the dispersion relation falls off from 
the linear behaviour. 

The term 4 r e z P ( q ,  T)/q, in the denominator of expressions (18)-(20), evidently, 
describes the screening effect of the electron charge which is redistributed in the 
electron sheet. It is convenient to introduce the characteristic wave vector qz by the 
equality 

4, = (2.reZ/dP(qrc). (21) 

Since the function P(q, T) decreases with increasing q for both 3D and 2D systems 
the equation (21) has only one solution for qsc. In the case of 

4 < 4, (22) 

the total potential h(r) induced by the acoustical wave is small as follows from (7) 
and (17), because the change of the bottom of the conduction band b(V.u) and the 
electrostatic energy - e 9  compensate each other. In this limiting case (q < qsc) the 
dispersion relation takes a simple form 

wz = q z c t { l  - [b2cO$/47reZ(X + 2@)]'} (23) 

and does not depend on parameters of the electron band, quantization into the sheet, 
temperature, etc. Of course, this simple expression is valid under certain conditions 
like those given by (5) and (22). In this limit, the decay length IC-' of the acoustic 
mode outside the sheet is proportional to f 3 .  

- 

In contrast to (22), in the case 

9 > QSC (24) 

the screening is not essential. Equation (19) implies that we can neglect the term 
- e 9  in (7) and the dispersion relation takes the form (for q B 4,) 

wz = dc',Ul- I[b2P(q, 7')/2(X + 2 ~ ) 1 ~ ) ~ 1 1 .  (2.9 
In this case, the magnitude of the mode outside the electron sheet decays like 
IC-' - q-'. For estimating the inequalities ( S ) ,  (22), (24) and discussing the dispersion 
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relation, it is necessary to calculate P ( q ,  T). At the low-temperature limit we can 
find from equation ( 1 1 )  

V A Kochelap and 0 Giilseren 

n 

where the summation is over all occupied subbands, k p )  is the Fermi wave vector 
of the electrons in the nth subband (h2(IC$?’F”’)2/2m’ = eF - e,,”, E, is the Fermi 
energy), 0 is the Heaviside step function [12]. In this limit, the relationship of the 
Fermi energy and the total surface concentration of electrons is given by 

where the summation is calculated over the occupied subbands. 
In the limiting case of high temperature T the polarization is obtained as 

P(n, T )  = n J T .  (28) 

As seen from (26)-(B), the parameter qSc characterizing the screening and also 
the localization effect increases with decreasing temperature. Because of this we will 
consider the case of low temperature in detail. The following analysis will clarify the 
physical picture and describes the actual situation qse < q better. The value q,, is 
always small comparable with k(;)  for semiconductors with large dielectric constant 
cu (for example, IV-VI compounds): 

q,, < k.f,“’. (29) 

This means that in the region q - kF where the localization effect is more 
pronounced, the screening does not suppress the effect. In general, for 
semiconductors with modest e,,, inequality (29) can also hold. It follows from (26) 
that the maximum value of q,, is of the order of the inverse Bohr radius aB for 
semiconductors. In fact, let the electron sheet be created by means of doping. It 
is necessaly to dope the semiconductor up to concentrations such that n,ai > 1 
to obtain free carriers and conductivity 16,131. But this inequality is equivalent to 
the criterion (29). When (29) holds, we can consider the case q - k ,  and (24) 
would be valid. The decay length of the acoustic wave outside the electron sheet 
E-’ = 2(X + 2 p ) / b Z P ( q , T ) q 2  is much larger than the wavelength 2 T / q  even for 
q - kF and q - l /d  for actual semiconductor parameters (See estimates below). 
Since the inequalities (9, (24) and (29) are compatible, (i.e. the expression for 
the dispersion relation (25) holds in the rcgion q - IC,), the electrostatic potential 
can be neglected and the splitting of the localized acoustical mode is maximal. At 
q > 2kF the magnitude of P(q)q  is proportional to q-’, so the splitting decreases 
with increasing q. 

In order to estimate the magnitude of the localization effect, we use the following 
parameter values relevant to most common semiconductors of general interest: 
X + 2p = 10l2 g cm-’ s-~, b = 15 eV, m = O S m u  (p-type material), eo = 15. Then 
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Figure 1. Characteristics of localized moder as 
a function of wave vector q for a single electron 
sheet at different temperatures: (U) phase velocity 
w / g e ~ ,  (b) invene deeay length IC. The maximum 
of the splitting in frequency is on the order of 
10" s-l. n e  inset shows the form of the solution. 
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Figure 2. Phase velocity Y f q c ~  a5 a function of 
wave vector q for two identical dectmn sheers 
at two different temperatures. Interlayer distance 
2L is equal to (U) 100 A, (b)  200 A and (c) 
400 A. While antisymmetric solutions are shown 
by dashed lines, symmetric solution5 are shown by 
solid liner. The inset s h o w  the tom of symmetric 
and antisymmetric solutions. 

for a typical electron concentration for a &-doping layer n = 6.7 x 10lz cm-* [5,6] 
(kF = 6.488 x lo6 cm-I, if we assume a single subband), we find the maximum of the 
splitting of the localized modes ( w ~ ~ ~ ~ - w , , , ~ ) / w ~ ~ ~ ~  = 0.03. The modes are localized 
inside a region of thickness 80 k For semiconductors with a large dielectric 
(IV-VI compounds) the splitting increases by as much as threefold. Quantitative 
behaviour of w ( q )  for the localized acoustical mode is shown in figure 1. 

4. Localization of acoustical modes for the wse o l  two electron sheets 

In previous sections we considered the localization effect for the acoustical modes 
caused by a single electron sheet. We have shown that the characteristic Scale Of the 
decaying of the waves in space outside the electron sheet can be considerable. It is 
known that not only heterostructures with one electron sheet but also many-layered 
systems can be fabricated [5 ,6 ] .  The distance between these electron sheets can be 
varied artificially. If the inter-sheet distance is on the order of the characteristic scale, 
the effect of interaction of these sheets is apparent. 

In this section, taking as an examplc the two-electron-sheets structure, we show 
that the interaction of these sheets leads not to a simple change of localized modes 
but gives a splitting to additional acoustical waves characterized by other features. 

Consider two identical electron sheets placed in the planes z = iL. Assume that 
the distance between them, 2L, is much larger than their thickness d. Analysis of 
analogues of the wave equations (13) and boundary conditions (14)-(16) shows that 
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there are two types of solutions: symmetrical and antisymmetrical solutions (related 
to the change P - -2). We give here only the antisymmetrical solutions: 

V A Kochelap and 0 Giilsercn 

FAeTK(x*L.) yBesc(”*u 121 > L 
-Bsinhqz/s inhqL -L < z < L .={ 

lL ”= -Asinhnz/s inhnL 

(30) 

Here the ‘upper’ signs are for the region z > L while ‘lower’ signs are for z < -L. 
K is equal to J-. Similar to the previous case the relationship between 
the coeflicients of the acoustic and electrostatic wave is given by 

(31) 

{ 

B = -Ab[4.eZP(q,T)/cu]/[2q(l t cothqL) t 4?rezP(q,T)/ru]. 

So the equation for K has the following form 

d w , g ) [ 1  + c o t h ( ~ ( w , q ) L l =  R(9)  

= [ b 2 P ( q , T ) / ( X  + 2 ~ ) l { d ( l t  cothqL)I2q(l t m t h q L )  

+ 4 r e 2 P ( q ,  T)/C~]-’] .  (32) 

The symmetrical solutions can be obtained from (30)-(32) by the simple substitutions 
sinh + cosh and coth - tanh and taking the same sign Cor coetTicients in (30). 

The existence of two types of solution corrcsponds to the splitting into two sorts 
of localized modes. The symmetrical onc, although differing from the single-electron- 
sheet solutions in the magnitude of the splitting, the degree of localization etc, shows 
the same physical trends. For examplc, as expectcd from the physical picture, the 
symmetrical solutions almost coincidc with the onc-sheet mode with doubled P(q,  T) 
at q L ,  K L  < 1. Both of the solutions, i.e. symmctrical and antisymmetrical, reduce 
to the one-sheet solutions (17)-(20) at q L ,  K L  B 1. 

However, the antisymmetrical modcs are considerably different at small K ,  q. This 
solution splits from the bulk one after a finite value of g = 9,. Since is small for 
q - gs, we can find the equation for qc: 

1 / L  = R(q,) = P2P(qciT)/(X + 21c)l{q:(1 t cothrlcL)[2q,(1+cothq,L) 

+ 4 ~ e 2 P ( q , , T ) / ~ U I - I }  (33) 

which always has single root. Near qC, a dispcrsion relation for the antisymmetrical 
modes is 

tJ2 = cZLg2(1 - ( n ’ ( 9 J 2 / C : 9 f ) ( q -  (/A2) 4 > qc (34) 

where the prime denotes the derivative with rcspcct to q. Analysis of equation 
(32) s h o w  that the splitting bctwcen bulk phonons and antisymmetrical localized 
modes increases when q increases up tu 2kF, then the splitting falls down. 
The antisymmetrical branch is always placed between the bulk phonons and the 
symmetrical modcs. The phonon spectrum for two identical electron sheets is 
illustrated in figure 2 by using the structure parameters given at previous section. 
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5. Conclusion 

In this paper, we have shown that the  electron sheet, in particular a m electron gas, 
localizes the acoustic modes due to electron-phonon interaction even for uniform 
lattice characteristics. The localized modes propagate along the sheet and decay away 
from it. The acoustic waves are accompanied by the charge waves. The splitting of 
the modes from the bulk phonons increases when the wave vector q increases and 
reaches a maximum at q = 2kF, then the split modes converge to the bulk phonons 
with increasing q. Additional features of the localized modes arise for the case of 
several electron sheets. 

From the above results it follows that the localization effect can be significant for 
media with strong electron-phonon interaction, large effective mass of electrons, high 
concentration and low temperature. 

In conclusion, the localization effect of the electron sheet on the acoustical modes 
can be considerable. It may be investigated by acoustical &doped measurements on 
semiconductors under optical scattering by the clcctron sheet, etc. The scattering of 
the localized modes can affect the clcctron transport in these materials. 

Appendix 

The surface density of the electrons rcdistributcd into the electron sheet can be 
calculated by treating the induced potential I r ( r )  as a perturbation. The electron 
concentration can be written in terms o l  the density operator f i  as 

n ( ~ )  = T ~ ( ~ ( T - T ' ) ~ ( T ' ) ) .  (35) 

The Heisenberg equation of motion for the density operator is 

ih aplat = [H, p ]  = 116 - pi-/ (36) 

where the Hamiltonian is H = Ifu + / L ( T , ! ) .  In the absence of the acoustic 
wave, the electrons are described by the Hamiltonian H ,  with eigenfunctions 
+ , n k ( ~ )  = +n(z)eik'rll, where + m ( ~ )  corresponds to transverse motion of electrons 
in the electron sheet and eigenvalues c n k r  n = 1,2,. . . ,k = (kz,ky). The induced 
potential h(r,  t )  = h(r)eiw'-6L is introduced as a perturbation, where h ( ~ )  is given 
by expression (7) and 6 - 0 at the end. The initial dcnsity operator 6, is diagonal and 
identical with the Fermi distribution function fo(enr). The solution of equation (36) 
to first order in h can be found in the interaction representation (i.e. any operator 
a is defined by a, = eiHot/h,4e-iHot/*) by inserting the initial value p(-co) = p, 

- 

To go further we should take into account criterion (5). Due to criterion (S), we 
consider the case where the thickness of the electron sheet is much less than the 
characteristic scale of all functions in the r-direction. Hence we can consider that 
h does not change through the electron sheet and does not lead to intersubband 
transitions, i.e. ( ~ / ~ ~ , ~ l h l + ~ , , ~ , )  = 0 for it f n', which are concluded from our 
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proposed model. Then, the change in density of electrons can be found from equation 
(35) with the use of h(rll,O) = /iqeiprll as 

V A  Kochelap and 0 G&xn 

In this expression the energy of phonons tiw can be neglected when compared with 
the electron energies, that corresponds to the adiabatic (static) limit. After integration 
over z we have the expression for the surface density of electrons given in (IO). 
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